Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
BMC Genomics ; 25(1): 321, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556880

RESUMO

Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.


Assuntos
Bombyx , Nosema , Animais , Transcriptoma , Larva/genética , Larva/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nosema/fisiologia , Perfilação da Expressão Gênica , Proliferação de Células , Lipídeos , Bombyx/genética
2.
Psychoradiology ; 4: kkae002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666137

RESUMO

Background: Parkinson's disease (PD) patients suffer from progressive gray matter volume (GMV) loss, but whether distinct patterns of atrophy progression exist within PD are still unclear. Objective: This study aims to identify PD subtypes with different rates of GMV loss and assess their association with clinical progression. Methods: This study included 107 PD patients (mean age: 60.06 ± 9.98 years, 70.09% male) with baseline and ≥ 3-year follow-up structural MRI scans. A linear mixed-effects model was employed to assess the rates of regional GMV loss. Hierarchical cluster analysis was conducted to explore potential subtypes based on individual rates of GMV loss. Clinical score changes were then compared across these subtypes. Results: Two PD subtypes were identified based on brain atrophy rates. Subtype 1 (n = 63) showed moderate atrophy, notably in the prefrontal and lateral temporal lobes, while Subtype 2 (n = 44) had faster atrophy across the brain, particularly in the lateral temporal region. Furthermore, subtype 2 exhibited faster deterioration in non-motor (MDS-UPDRS-Part Ⅰ, ß = 1.26 ± 0.18, P = 0.016) and motor (MDS-UPDRS-Part Ⅱ, ß = 1.34 ± 0.20, P = 0.017) symptoms, autonomic dysfunction (SCOPA-AUT, ß = 1.15 ± 0.22, P = 0.043), memory (HVLT-Retention, ß = -0.02 ± 0.01, P = 0.016) and depression (GDS, ß = 0.26 ± 0.083, P = 0.019) compared to subtype 1. Conclusion: The study has identified two PD subtypes with distinct patterns of atrophy progression and clinical progression, which may have implications for developing personalized treatment strategies.

3.
Trends Biotechnol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604879

RESUMO

Molecular imprints, which are crosslinked architectures containing specific molecular recognition cavities for targeting compounds, have recently transitioned from in vitro diagnosis to in vivo treatment. In current application scenarios, it has become an important topic to create new biomolecular recognition pathways through molecular imprinting, thereby inhibiting the pathogenesis and regulating the development of diseases. This review starts with a pathological analysis, mainly focusing on the corresponding artificial enzymes, enzyme inhibitors and antibody mimics with enhanced functions that are created by molecular imprinting strategies. Recent advances are highlighted in the use of molecular imprints as tailor-made nanomedicines for the prevention of three major diseases: metabolic syndrome, cancer, and bacterial/viral infections.

4.
Front Oncol ; 14: 1302196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434689

RESUMO

Objective: The aim of this report was to comprehensively investigate the clinicopathological features, histological characteristics, and differential diagnosis of tall cell carcinoma with reversed polarity of the breast (TCCRP) to enhance the understanding of this tumour for precise therapeutic interventions. Methods: The clinicopathological characteristics and differential diagnosis of a patient with TCCRP were retrospectively analysed, and a systematic literature review was extracted from relevant published studies on PubMed. Results: All patients included in the study were female, with a median age of 51 years. Microscopically, the tumour cells exhibited a solid papillary growth pattern with tall columnar morphology and reversed nuclear polarity. Immunohistochemistry revealed that the tumours were triple-negative breast cancer (negative for ER, PR, and HER-2), with a low Ki-67 proliferation index. Different degrees of expression were observed for CK7, Calretinin, and S-100 markers; however, CK5/6 showed high expression levels. Conclusions: TCCRP is an uncommon invasive carcinoma subtype found in the breast. Its histological morphology resembles that of tall cell subtype papillary thyroid carcinoma. Accurate diagnosis requires the integration of histomorphological assessment along with immunohistochemistry and molecular genetics analysis.

5.
mBio ; 15(2): e0274923, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193684

RESUMO

Microsporidia are obligate intracellular parasites that infect a wide variety of hosts including humans. Microsporidian spores possess a unique, highly specialized invasion apparatus involving the polar filament, polaroplast, and posterior vacuole. During spore germination, the polar filament is discharged out of the spore forming a hollow polar tube that transports the sporoplasm components including the nucleus into the host cell. Due to the complicated topological changes occurring in this process, the details of sporoplasm formation are not clear. Our data suggest that the limiting membrane of the nascent sporoplasm is formed by the polaroplast after microsporidian germination. Using electron microscopy and 1,1'-dioctadecyl-3,3,3',3' tetramethyl indocarbocyanine perchlorate staining, we describe that a large number of vesicles, nucleus, and other cytoplasm contents were transported out via the polar tube during spore germination, while the posterior vacuole and plasma membrane finally remained in the empty spore coat. Two Nosema bombycis sporoplasm surface proteins (NbTMP1 and NoboABCG1.1) were also found to localize in the region of the polaroplast and posterior vacuole in mature spores and in the discharged polar tube, which suggested that the polaroplast during transport through the polar tube became the limiting membrane of the sporoplasm. The analysis results of Golgi-tracker green and Golgi marker protein syntaxin 6 were also consistent with the model of the transported polaroplast derived from Golgi transformed into the nascent sporoplasm membrane.IMPORTANCEMicrosporidia, which are obligate intracellular pathogenic organisms, cause huge economic losses in agriculture and even threaten human health. The key to successful infection by the microsporidia is their unique invasion apparatus which includes the polar filament, polaroplast, and posterior vacuole. When the mature spore is activated to geminate, the polar filament uncoils and undergoes a rapid transition into the hollow polar tube that transports the sporoplasm components including the microsporidian nucleus into host cells. Details of the structural difference between the polar filament and polar tube, the process of cargo transport in extruded polar tube, and the formation of the sporoplasm membrane are still poorly understood. Herein, we verify that the polar filament evaginates to form the polar tube, which serves as a conduit for transporting the nucleus and other sporoplasm components. Furthermore, our results indicate that the transported polaroplast transforms into the sporoplasm membrane during spore germination. Our study provides new insights into the cargo transportation process of the polar tube and origin of the sporoplasm membrane, which provide important clarification of the microsporidian infection mechanism.


Assuntos
Microsporídios , Humanos , Esporos Fúngicos , Citoplasma , Microscopia Eletrônica , Membrana Celular , Bandagens
6.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38199846

RESUMO

Microsporidia are difficult to be completely eliminated once infected, and the persistence disrupts host cell functions. Here in this study, we aimed to elucidate the impairing effects and consequences of microsporidia on host DCs. Enterocytozoon hellem, one of the most commonly diagnosed zoonotic microsporidia species, was applied. In vivo models demonstrated that E. hellem-infected mice were more susceptible to further pathogenic challenges, and DCs were identified as the most affected groups of cells. In vitro assays revealed that E. hellem infection impaired DCs' immune functions, reflected by down-regulated cytokine expressions, lower extent of maturation, phagocytosis ability, and antigen presentations. E. hellem infection also detained DCs' potencies to prime and stimulate T cells; therefore, host immunities were disrupted. We found that E. hellem Ser/Thr protein phosphatase PP1 directly interacts with host p38α (MAPK14) to manipulate the p38α(MAPK14)/NFAT5 axis of the MAPK pathway. Our study is the first to elucidate the molecular mechanisms of the impairing effects of microsporidia on host DCs' immune functions. The emergence of microsporidiosis may be of great threat to public health.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Animais , Camundongos , Apresentação de Antígeno , Fagocitose , Citocinas , Fatores de Transcrição , Fosfoproteínas Fosfatases
7.
ACS Nano ; 18(4): 3651-3668, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241481

RESUMO

Oral administration is the most preferred approach for treating colon diseases, and in situ vaccination has emerged as a promising cancer therapeutic strategy. However, the lack of effective drug delivery platforms hampered the application of in situ vaccination strategy in oral treatment of colorectal cancer (CRC). Here, we construct an oral core-shell nanomedicine by preparing a silk fibroin-based dual sonosensitizer (chlorin e6, Ce6)- and immunoadjuvant (imiquimod, R837)-loaded nanoparticle as the core, with its surface coated with plant-extracted lipids and pluronic F127 (p127). The resultant nanomedicines (Ce6/R837@Lp127NPs) maintain stability during their passage through the gastrointestinal tract and exert improved locomotor activities under ultrasound irradiation, achieving efficient colonic mucus infiltration and specific tumor penetration. Thereafter, Ce6/R837@Lp127NPs induce immunogenic death of colorectal tumor cells by sonodynamic treatment, and the generated neoantigens in the presence of R837 serve as a potent in situ vaccine. By integrating with immune checkpoint blockades, the combined treatment modality inhibits orthotopic tumors, eradicates distant tumors, and modulates intestinal microbiota. As the first oral in situ vaccination, this work spotlights a robust oral nanoplatform for producing a personalized vaccine against CRC.


Assuntos
Neoplasias Colorretais , Nanopartículas , Vacinas , Humanos , Imiquimode , Linhagem Celular Tumoral , Nanomedicina , Neoplasias Colorretais/tratamento farmacológico , Vacinação , Imunoterapia
8.
J Fish Dis ; 47(3): e13893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062566

RESUMO

Enterospora epinepheli is an intranuclear microsporidian parasite causing serious emaciative disease in hatchery-bred juvenile groupers (Epinephelus spp.). Rapid and sensitive detection is urgently needed as its chronic infection tends to cause emaciation as well as white faeces syndrome and results in fry mortality. This study established a TaqMan probe-based real-time quantitative PCR assays targeting the small subunit rRNA (SSU) gene of E. epinepheli. The relationship between the standard curve of cycle threshold (Ct) and the logarithmic starting quantity (SQ) was determined as Ct = -3.177 lg (SQ) + 38.397. The correlation coefficient (R2 ) was 0.999, and the amplification efficiency was 106.4%. The detection limit of the TaqMan probe-based qPCR assay was 1.0 × 101 copies/µL and that is 100 times sensitive than the traditional PCR method. There is no cross-reaction with other aquatic microsporidia such as Ecytonucleospora hepatopenaei, Nucleospora hippocampi, Potaspora sp., Ameson portunus. The intra-assay and inter-assay showed great repeatability and reproducibility. In addition, the test of clinical samples showed that this assay effectively detected E. epinepheli in the grouper's intestine tissue. The established TaqMan qPCR assays will be a valuable diagnostic tool for the epidemiological investigation as well as prevention and control of E. epinepheli.


Assuntos
Apansporoblastina , Bass , Doenças dos Peixes , Microsporídios , Animais , Bass/genética , Reprodutibilidade dos Testes , Doenças dos Peixes/diagnóstico , Melhoramento Vegetal , Microsporídios/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
9.
Nucleic Acids Res ; 52(D1): D1024-D1032, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37941143

RESUMO

The silkworm Bombyx mori is a domesticated insect that serves as an animal model for research and agriculture. The silkworm super-pan-genome dataset, which we published last year, is a unique resource for the study of global genomic diversity and phenotype-genotype association. Here we present SilkMeta (http://silkmeta.org.cn), a comprehensive database covering the available silkworm pan-genome and multi-omics data. The database contains 1082 short-read genomes, 546 long-read assembled genomes, 1168 transcriptomes, 294 phenotype characterizations (phenome), tens of millions of variations (variome), 7253 long non-coding RNAs (lncRNAs), 18 717 full length transcripts and a set of population statistics. We have compiled publications on functional genomics research and genetic stock deciphering (mutant map). A range of bioinformatics tools is also provided for data visualization and retrieval. The large batch of omics data and tools were integrated in twelve functional modules that provide useful strategies and data for comparative and functional genomics research. The interactive bioinformatics platform SilkMeta will benefit not only the silkworm but also the insect biology communities.


Assuntos
Bombyx , Genoma de Inseto , Animais , Bombyx/genética , Biologia Computacional , Genômica , Metadados , Multiômica
10.
Microbiol Spectr ; 12(1): e0301423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38014967

RESUMO

IMPORTANCE: The multiplex-crRNA CRISPR/Cas12a detection method saves hands-on time, reduces the risk of aerosol pollution, and can be directly applied to detecting silkworms infected with Nosema bombycis. This study provides a new approach for the inspection and quarantine of silkworm pébrine disease in sericulture and provides a new method for the detection of other pathogens.


Assuntos
Bombyx , Microsporidiose , Nosema , Animais , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Nosema/genética
11.
Microbiol Spectr ; 12(2): e0361023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38149855

RESUMO

Microsporidia are intracellular fungus-like pathogens and the infection symptoms include recurrent diarrhea and systematic inflammations. The major infection route of microsporidia is the digestive tract. Since microsporidia are hard to fully eliminate, the interactions and persistence of the pathogen within epithelium may modulate host susceptibility to digestive disorders. In this study, both in vitro and in vivo infection models were applied. The alterations of epithelial barrier integrity, permeability, and tight junction proteins after microsporidia infection were assessed on MDCK/Caco-2 monolayers. The fecal intestinal microbiota and tissue alterations after microsporidia infection were assessed on C57BL/6 mice. Moreover, the susceptibility to develop dextran sulfate sodium (DSS)-induced inflammatory bowel diseases (IBDs) was also analyzed by the murine infection model. The results demonstrated that microsporidia infection increased epithelium permeability, weakened wound healing capability, and destructed tight junction protein zonula occludens-1. Microsporidia infection also dysregulates intestinal microbiota. These impairing effects of microsporidia increased host vulnerability to develop enteritis as shown by the murine model of DSS-induced IBD. Our study is the first to elucidate molecular mechanisms of the damaging effects of microsporidia on host epithelium and pointed out the cryptic threats of latent microsporidia infection to public health as reflected by the increased chances of developing more severe diseases.IMPORTANCEMicrosporidia are widely present in nature and usually cause latent and persistent infections in hosts. Given the fact that the digestive tract is the major infection route, it is of great importance to explore the consequences of microsporidia infection on the intestinal epithelial barrier and the risks to the host. In this study, we demonstrated the destructing effects of microsporidium infection on epithelial barriers manifested as increased epithelial permeability, weakened wound healing ability, and disrupted tight junctions. Moreover, microsporidia made the host more susceptible to dextran sulfate sodium-induced inflammatory bowel disease. These findings provide new evidence for us to better understand and develop novel strategies for microsporidia prevention and disease control.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Microsporídios , Microsporidiose , Humanos , Animais , Camundongos , Colite/induzido quimicamente , Células CACO-2 , Sulfato de Dextrana/efeitos adversos , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
12.
PLoS Pathog ; 19(12): e1011859, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060601

RESUMO

Microsporidia are a group of obligate intracellular parasites that infect almost all animals, causing serious human diseases and major economic losses to the farming industry. Nosema bombycis is a typical microsporidium that infects multiple lepidopteran insects via fecal-oral and transovarial transmission (TOT); however, the underlying TOT processes and mechanisms remain unknown. Here, we characterized the TOT process and identified key factors enabling N. bombycis to invade the ovariole and oocyte of silkworm Bombyx mori. We found that the parasites commenced with TOT at the early pupal stage when ovarioles penetrated the ovary wall and were exposed to the hemolymph. Subsequently, the parasites in hemolymph and hemolymph cells firstly infiltrated the ovariole sheath, from where they invaded the oocyte via two routes: (I) infecting follicular cells, thereby penetrating oocytes after proliferation, and (II) infecting nurse cells, thus entering oocytes following replication. In follicle and nurse cells, the parasites restructured and built large vacuoles to deliver themselves into the oocyte. In the whole process, the parasites were coated with B. mori vitellogenin (BmVg) on their surfaces. To investigate the BmVg effects on TOT, we suppressed its expression and found a dramatic decrease of pathogen load in both ovarioles and eggs, suggesting that BmVg plays a crucial role in the TOT. Thereby, we identified the BmVg domains and parasite spore wall proteins (SWPs) mediating the interaction, and demonstrated that the von Willebrand domain (VWD) interacted with SWP12, SWP26 and SWP30, and the unknown function domain (DUF1943) bound with the SWP30. When disrupting these interactions, we found significant reductions of the pathogen load in both ovarioles and eggs, suggesting that the interplays between BmVg and SWPs were vital for the TOT. In conclusion, our study has elucidated key aspects about the microsporidian TOT and revealed the key factors for understanding the molecular mechanisms underlying this transmission.


Assuntos
Bombyx , Nosema , Animais , Humanos , Vitelogeninas/metabolismo , Esporos Fúngicos/metabolismo , Nosema/metabolismo , Bombyx/metabolismo
13.
PLoS Negl Trop Dis ; 17(12): e0011806, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064503

RESUMO

Microsporidia are fungal obligate intracellular pathogens, which infect most animals and cause microsporidiosis. Despite the serious threat that microsporidia pose to humans and agricultural animals, few drugs are available for the treatment and control of microsporidia. To identify novel inhibitors, we took advantage of the model organism Caenorhabditis elegans infected with its natural microsporidian Nematocida parisii. We used this system to screen the Pandemic Response Box, a collection of 400 diverse compounds with known antimicrobial activity. After testing these compounds in a 96-well format at high (100 µM) and low (40 µM) concentrations, we identified four inhibitors that restored the ability of C. elegans to produce progeny in the presence of N. parisii. All four compounds reduced the pathogen load of both N. parisii and Pancytospora epiphaga, a C. elegans-infecting microsporidia related to human-infecting species. One of these compounds, a known inhibitor of a viral protease, MMV1006203, inhibited invasion and prevented the firing of spores. A bis-indole derivative, MMV1593539, decreased spore viability. An albendazole analog, MMV1782387, inhibited proliferation of N. parisii. We tested albendazole as well as 5 other analogs and observed that MMV1782387 was amongst the strongest inhibitors of N. parisii and displayed the least host toxicity. Our study further demonstrates the effectiveness of the C. elegans-N. parisii system for discovering microsporidia inhibitors and the compounds we identified provide potential scaffolds for anti-microsporidia drug development.


Assuntos
Microsporídios , Microsporidiose , Animais , Humanos , Caenorhabditis elegans , Albendazol/farmacologia , Pandemias , Microsporídios/fisiologia
14.
Insects ; 14(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132605

RESUMO

Lepidoptera is one of the most speciose insect orders, causing enormous damage to agricultural and forest crops. Although genome editing has been achieved in a few Lepidoptera for insect controls, most techniques are still limited. Here, by injecting female pupae of the Lepidoptera model species, Bombyx mori, gene editing was established using the Receptor-Mediated Ovary Transduction of Cargo (ReMOT) control technique. We identified a B. mori oocytes-targeting peptide ligand (BmOTP, a 29 aa of vitellogenin N-terminal of silkworms) with a highly conserved sequence in lepidopteran insects that could efficiently deliver mCherry into oocytes. When BmOTP was fused to CRISPR-associated protein 9 (Cas9) and the BmOTP-Cas9 ribonucleoprotein complex was injected into female pupae, heritable editing of the offspring was achieved in the silkworms. Compared with embryo microinjection, individual injection is more convenient and eliminates the challenge of injecting extremely small embryos. Our results will significantly facilitate the genetic manipulation of other lepidopteran insects, which is essential for advancing lepidopteran pest control.

15.
BMC Microbiol ; 23(1): 334, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951859

RESUMO

BACKGROUND: Enterocytozoon bieneusi, Encephalitozoon spp., Cryptosporidium spp., and Giardia duodenalis (G. intestinalis) are enteric pathogens that cause diarrhea in pigs. This study aimed to determine the prevalence of these enteric parasites and their coinfection with E. bieneusi in diarrheic pigs in Southwest China (Chongqing and Sichuan) using nested polymerase chain reaction (nPCR) based methods. RESULTS: A total of 514 fecal samples were collected from diarrheic pigs from 14 pig farms in Chongqing (five farms) and Sichuan (nine farms) Provinces. The prevalence of Encephalitozoon spp., Cryptosporidium spp. and G. duodenalis was 16.14% (83/514), 0% (0/514), and 8.95% (46/514), respectively. Nested PCR revealed 305 mono-infections of E. bieneusi, six of E. cuniculi, two of E. hellem, and nine of G. duodenalis and 106 concurrent infections of E. bieneusi with the other enteric pathogens. No infections of E. intestinalis and Cryptosporidium species were detected. The highest coinfection was detected between E. bieneusi and E. cuniculi (10.5%, 54/514), followed by E. bieneusi and G. duodenalis (5.8%, 30/514) and E. bieneusi and E. hellem (2.9%, 15/514). E. bieneusi was the most frequently detected enteric pathogen, followed by E. cuniculi, G. duodenalis and E. hellem. There was a significant age-related difference in the prevalence of E. cuniculi in fattening pigs (χ2 = 15.266, df = 3, P = 0.002) and G. duodenalis in suckling pigs (χ2 = 11.92, df = 3, P = 0.008) compared with the other age groups. Sequence analysis of the ITS region of Encephalitozoon species showed two genotypes (II and III) for E. cuniculi and one (TURK1B) for E. hellem. Only G. duodenalis assemblage A was identified in all nested PCR-positive samples. E. bieneusi was found more often than other enteric pathogens. CONCLUSIONS: This study showed that E. bieneusi, Encephalitozoon spp. [E. cuniculi and E. hellem] and G. duodenalis were common enteric parasites in diarrheic pigs in Chongqing and Sichuan Provinces. In case of both mono-infection and coinfection, E. bieneusi was the most common enteric pathogen in diarrheic pigs. Thus, it may be a significant cause of diarrhea in pigs. Precautions should be taken to prevent the spread of these enteric parasites.


Assuntos
Coinfecção , Criptosporidiose , Cryptosporidium , Encephalitozoon , Enterocytozoon , Giardia lamblia , Giardíase , Microsporidiose , Animais , Suínos , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/parasitologia , Enterocytozoon/genética , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/genética , Coinfecção/epidemiologia , Coinfecção/veterinária , Microsporidiose/epidemiologia , Microsporidiose/veterinária , China/epidemiologia , Genótipo , Fezes/parasitologia , Diarreia/epidemiologia , Diarreia/veterinária
16.
Science ; 382(6672): 763-764, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37972175

RESUMO

The mussel-adherent secreta interface reveals how nonliving material can be compatible with tissue.


Assuntos
Biopolímeros , Bivalves , Cílios , Animais , Bivalves/fisiologia , Cílios/fisiologia
17.
Microbiol Spectr ; 11(6): e0068123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811955

RESUMO

IMPORTANCE: There are a few reports on the resistance of microsporidia, including Nosema bombycis. Here, the alkali-soluble germination proteins of N. bombycis were used as immunogens to prepare a monoclonal antibody, and its single-chain variable fragments effectively blocked microsporidia infection. Our study has provided novel strategies for microsporidiosis control and demonstrated a useful method for the potential treatment of other microsporidia diseases.


Assuntos
Bombyx , Microsporidiose , Nosema , Animais , Bombyx/metabolismo , Anticorpos Monoclonais , Esporos , Proliferação de Células
18.
Front Biosci (Landmark Ed) ; 28(8): 128, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37664925

RESUMO

BACKGROUND: Breast cancer is the commonest global malignancy and the primary cause of carcinoma death. MCM6 is vital to carcinogenesis, but the pathogenesis of MCM6 remains unclear. METHODS: MCM6 expression in patients with breast cancer was examined through The Cancer Genome Atlas (TCGA) database, immunohistochemistry, Quantitative Real-Time PCR (qRT‒PCR) and Western blotting. The prognostic factors were assessed by the Kaplan‒Meier method and Cox regression. On the basis of the key factors selected by multivariable Cox regression analysis, a nomogram risk prediction model was adopted for clinical risk assessment. The TCGA database was utilized to determine how MCM6 is correlated with chemotherapy sensitivity, immune checkpoint-related genes (ICGs), tumor-infiltrating immune cells, along with tumor mutation burden (TMB) and methylation. The impact of MCM6 on carcinoma cells was investigated in terms of proliferation, cell cycle as well as migrating and invasive behavior through CCK assays, flow cytometry, wound healing assays, Transwell assays and xenotransplantation experiments. RESULTS: MCM6 expression was upregulated, which is closely associated with the size of the tumor (p = 0.001) and lymph node metastasis (p = 0.012) in patients with breast cancer. Multivariate analysis revealed MCM6 to be an independent risk factor for prognosis in patients with breast carcinoma. The nomograph prediction model included MCM6, age, ER, M and N stage, which displayed good discrimination with a C index of 0.817 and good calibration. Overexpression of MCM6 correlated with chemotherapy sensitivity, immune checkpoint-related genes (ICGs), tumor-infiltrating immune cells, tumor mutation burden (TMB), and methylation. Silencing MCM6 significantly inhibited proliferation, prolonged the G1 phase of the cell cycle, and restrained the proliferation, migration and invasive behavior of cancerous cells and inhibited tumor growth in vivo. CONCLUSIONS: Our research shows that MCM6 is highly expressed in breast cancer and can be used as an independent prognostic factor, which is expected to become a new target for the treatment of breast cancer in the future.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Neoplasias da Mama/genética , Prognóstico , Ciclo Celular , Biomarcadores , Componente 6 do Complexo de Manutenção de Minicromossomo
19.
Biomater Sci ; 11(20): 6770-6774, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37665299

RESUMO

This work reports a polymeric adenosine triphosphate (ATP)-responsive trypsin inhibitor. The polymeric inhibitor was rationally obtained by optimizing the benzamidine and phenylboronic acid monomers, which could synergistically bind with the phosphate and ribose groups in ATP. The ATP-responsive trypsin activity shows its potential as a therapeutic drug for cancer-targeting cell inhibition.

20.
Theor Appl Genet ; 136(10): 211, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737910

RESUMO

KEY MESSAGE: A major stable QTL for kernel number per spike was narrowed down to a 2.19-Mb region containing two potential candidate genes, and its effects on yield-related traits were characterized. Kernel number per spike (KNPS) in wheat is a key yield component. Dissection and characterization of major stable quantitative trait loci (QTLs) for KNPS would be of considerable value for the genetic improvement of yield potential using molecular breeding technology. We had previously reported a major stable QTL controlling KNPS, qKnps-4A. In the current study, primary fine-mapping analysis, based on the primary mapping population, located qKnps-4A to an interval of approximately 6.8-Mb from 649.0 to 655.8 Mb on chromosome 4A refering to 'Kenong 9204' genome. Further fine-mapping analysis based on a secondary mapping population narrowed qKnps-4A to an approximately 2.19-Mb interval from 653.72 to 655.91 Mb. Transcriptome sequencing, gene function annotation analysis and homologous gene related reports showed that TraesKN4A01HG38570 and TraesKN4A01HG38590 were most likely to be candidate genes of qKnps-4A. Phenotypic analysis based on paired near-isogenic lines in the target region showed that qKnps-4A increased KNPS mainly by increasing the number of central florets per spike. We also evaluated the effects of qKnps-4A on other yield-related traits. Moreover, we dissected the QTL cluster of qKnps-4A and qTkw-4A and proved that the phenotypic effects were probably due to close linkage of two or more genes rather than pleiotropic effects of a single gene. This study provides molecular marker resource for wheat molecular breeding designed to improve yield potential, and lay the foundation for gene functional analysis of qKnps-4A.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Embaralhamento de DNA , Anotação de Sequência Molecular , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...